Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Commun ; 13(1): 5929, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2062208

ABSTRACT

Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Ferrets , Humans , Melphalan , Mice , Phenotype , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , gamma-Globulins
2.
Sci Rep ; 12(1): 15069, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-2008325

ABSTRACT

Golden Syrian hamsters (Mesocricetus auratus) are used as a research model for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Millions of Golden Syrian hamsters are also kept as pets in close contact to humans. To determine the minimum infective dose (MID) for assessing the zoonotic transmission risk, and to define the optimal infection dose for experimental studies, we orotracheally inoculated hamsters with SARS-CoV-2 doses from 1 * 105 to 1 * 10-4 tissue culture infectious dose 50 (TCID50). Body weight and virus shedding were monitored daily. 1 * 10-3 TCID50 was defined as the MID, and this was still sufficient to induce virus shedding at levels up to 102.75 TCID50/ml, equaling the estimated MID for humans. Virological and histological data revealed 1 * 102 TCID50 as the optimal dose for experimental infections. This compelling high susceptibility leading to productive infections in Golden Syrian hamsters must be considered as a potential source of SARS-CoV-2 infection for humans that come into close contact with pet hamsters.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Models, Animal , Humans , Lung/pathology , Mesocricetus , Pandemics , Zoonoses/pathology
3.
Res Vet Sci ; 140: 229-232, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401839

ABSTRACT

Several non-variant of concern SARS-CoV-2 infections in pets have been reported as documented in the OIE and GISAID databases and there is only one fully documented case of an alpha variant of concern (VOC)(B.1.1.7) in the United States so far. Here, we describe the first case in a cat infected with the alpha SARS-CoV-2 variant in Germany. A cat suffering from pneumonia was presented to a veterinary practice. The pneumonia was treated symptomatically, but 16 days later the cat was presented again. Since the owner had been tested positive for a SARS-CoV-2 infection in the meantime, swab samples were taken from the cat and analyzed for SARS-CoV-2 specific nucleic acids. The various RT-qPCR analyses and whole-genome sequencing revealed the presence of the SARS-CoV-2 B.1.1.7 variant in this cat. This study shows that pets living in close contact with SARS-CoV-2 B.1.1.7 infected owners can contract this virus and also suffer from a respiratory disease. It is not clear yet whether onward transmissions to other cats and humans can occur. To minimize transmission risks, pet owners and veterinarians should comply to the hygienic rules published by OIE and others. It must be stated, that infections of cats with SARS-CoV-2 is still a rare event. Cats with clinical signs of a respiratory disease should be presented to a veterinarian, who will decide on further steps.


Subject(s)
COVID-19 , Cat Diseases , Animals , COVID-19/veterinary , Cat Diseases/diagnosis , Cats , Germany , Humans , Real-Time Polymerase Chain Reaction/veterinary , SARS-CoV-2
4.
Diagn Microbiol Infect Dis ; 101(4): 115520, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1363963

ABSTRACT

Sample panels of SARS-CoV-2 cases were retrospectively whole-genome sequenced. In three individuals, samples of upper and lower respiratory tract resulted in identical sequences suggesting virus stability including the spike protein cleavage site. In a fourth case, low-level intra-host genomic evolution and a unique 5-nucleotide deletion was observed.


Subject(s)
Adaptation, Physiological/genetics , COVID-19/virology , Respiratory System/virology , SARS-CoV-2/isolation & purification , Whole Genome Sequencing , Genome, Viral , Humans , Retrospective Studies , Tissue Distribution
5.
Microbiome ; 9(1): 51, 2021 02 20.
Article in English | MEDLINE | ID: covidwho-1090608

ABSTRACT

BACKGROUND: The detection of pathogens in clinical and environmental samples using high-throughput sequencing (HTS) is often hampered by large amounts of background information, which is especially true for viruses with small genomes. Enormous sequencing depth can be necessary to compile sufficient information for identification of a certain pathogen. Generic HTS combining with in-solution capture enrichment can markedly increase the sensitivity for virus detection in complex diagnostic samples. METHODS: A virus panel based on the principle of biotinylated RNA baits was developed for specific capture enrichment of epizootic and zoonotic viruses (VirBaits). The VirBaits set was supplemented by a SARS-CoV-2 predesigned bait set for testing recent SARS-CoV-2-positive samples. Libraries generated from complex samples were sequenced via generic HTS (without enrichment) and afterwards enriched with the VirBaits set. For validation, an internal proficiency test for emerging epizootic and zoonotic viruses (African swine fever virus, Ebolavirus, Marburgvirus, Nipah henipavirus, Rift Valley fever virus) was conducted. RESULTS: The VirBaits set consists of 177,471 RNA baits (80-mer) based on about 18,800 complete viral genomes targeting 35 epizootic and zoonotic viruses. In all tested samples, viruses with both DNA and RNA genomes were clearly enriched ranging from about 10-fold to 10,000-fold for viruses including distantly related viruses with at least 72% overall identity to viruses represented in the bait set. Viruses showing a lower overall identity (38% and 46%) to them were not enriched but could nonetheless be detected based on capturing conserved genome regions. The internal proficiency test supports the improved virus detection using the combination of HTS plus targeted enrichment but also points to the risk of cross-contamination between samples. CONCLUSIONS: The VirBaits approach showed a high diagnostic performance, also for distantly related viruses. The bait set is modular and expandable according to the favored diagnostics, health sector, or research question. The risk of cross-contamination needs to be taken into consideration. The application of the RNA-baits principle turned out to be user friendly, and even non-experts can easily use the VirBaits workflow. The rapid extension of the established VirBaits set adapted to actual outbreak events is possible as shown for SARS-CoV-2. Video abstract.


Subject(s)
SARS-CoV-2/isolation & purification , Viruses/isolation & purification , Zoonoses/diagnosis , Animals , DNA, Viral/genetics , Genome, Viral , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Viruses/classification
6.
Lancet Microbe ; 1(5): e218-e225, 2020 09.
Article in English | MEDLINE | ID: covidwho-1087372

ABSTRACT

BACKGROUND: In December, 2019, a novel zoonotic severe acute respiratory syndrome-related coronavirus emerged in China. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became pandemic within weeks and the number of human infections and severe cases is increasing. We aimed to investigate the susceptibilty of potential animal hosts and the risk of anthropozoonotic spill-over infections. METHODS: We intranasally inoculated nine fruit bats (Rousettus aegyptiacus), ferrets (Mustela putorius), pigs (Sus scrofa domesticus), and 17 chickens (Gallus gallus domesticus) with 105 TCID50 of a SARS-CoV-2 isolate per animal. Direct contact animals (n=3) were included 24 h after inoculation to test viral transmission. Animals were monitored for clinical signs and for virus shedding by nucleic acid extraction from nasal washes and rectal swabs (ferrets), oral swabs and pooled faeces samples (fruit bats), nasal and rectal swabs (pigs), or oropharyngeal and cloacal swabs (chickens) on days 2, 4, 8, 12, 16, and 21 after infection by quantitative RT-PCR (RT-qPCR). On days 4, 8, and 12, two inoculated animals (or three in the case of chickens) of each species were euthanised, and all remaining animals, including the contacts, were euthanised at day 21. All animals were subjected to autopsy and various tissues were collected for virus detection by RT-qPCR, histopathology immunohistochemistry, and in situ hybridisation. Presence of SARS-CoV-2 reactive antibodies was tested by indirect immunofluorescence assay and virus neutralisation test in samples collected before inoculation and at autopsy. FINDINGS: Pigs and chickens were not susceptible to SARS-CoV-2. All swabs, organ samples, and contact animals were negative for viral RNA, and none of the pigs or chickens seroconverted. Seven (78%) of nine fruit bats had a transient infection, with virus detectable by RT-qPCR, immunohistochemistry, and in situ hybridisation in the nasal cavity, associated with rhinitis. Viral RNA was also identified in the trachea, lung, and lung-associated lymphatic tissue in two animals euthanised at day 4. One of three contact bats became infected. More efficient virus replication but no clinical signs were observed in ferrets, with transmission to all three direct contact animals. Mild rhinitis was associated with viral antigen detection in the respiratory and olfactory epithelium. Prominent viral RNA loads of 0-104 viral genome copies per mL were detected in the upper respiratory tract of fruit bats and ferrets, and both species developed SARS-CoV-2-reactive antibodies reaching neutralising titres of up to 1/1024 after 21 days. INTERPRETATION: Pigs and chickens could not be infected intranasally by SARS-CoV-2, whereas fruit bats showed characteristics of a reservoir host. Virus replication in ferrets resembled a subclinical human infection with efficient spread. Ferrets might serve as a useful model for further studies-eg, testing vaccines or antivirals. FUNDING: German Federal Ministry of Food and Agriculture.


Subject(s)
COVID-19 , Chiroptera , Rhinitis , Animals , Antibodies, Viral , COVID-19/veterinary , Chickens/genetics , Chiroptera/genetics , Ferrets/genetics , RNA, Viral/genetics , SARS-CoV-2
7.
Emerg Infect Dis ; 26(12): 2982-2985, 2020 12.
Article in English | MEDLINE | ID: covidwho-890311

ABSTRACT

Raccoon dogs might have been intermediate hosts for severe acute respiratory syndrome-associated coronavirus in 2002-2004. We demonstrated susceptibility of raccoon dogs to severe acute respiratory syndrome coronavirus 2 infection and transmission to in-contact animals. Infected animals had no signs of illness. Virus replication and tissue lesions occurred in the nasal conchae.


Subject(s)
COVID-19/transmission , SARS-CoV-2/genetics , Animals , COVID-19/virology , Disease Models, Animal , Disease Susceptibility/virology , Pandemics , Raccoon Dogs/virology , Reverse Transcriptase Polymerase Chain Reaction , Viral Zoonoses , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL